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A. Device fabrication

The devices are all fabricated on high-resistivity (> 10000 Ω·cm) and double-polished

silicon wafer. Before film deposition, the silicon substrate is ultrasonically cleaned in ace-

tone and isopropanol, followed by immersion in piranha solution (a mixture of concentrated

sulfuric acid and hydrogen peroxide) to remove organic residues, and then cleaned by hy-

drofluoric acid to remove oxide layer on the silicon surface. After the substrate cleaning,

a layer of SiNx (∼ 18 nm) is grown on the silicon using plasma enhance chemical vapor

deposition (PECVD) technique. We then deposit aluminum (Al) film in an environment

with a vacuum degree of 5× 10−9 Torr using electron beam evaporation, and the deposition

rate is about 0.5 nm/s. After defining the circuit pattern using a lift-off process, we deposit

the top layer of SiNx (∼ 50 nm) over the entire wafer by PECVD. Both SiNx layers are

deposited at a lower temperature ≈ 80◦C to avoid changes in the properties of the Al film.

The main DC properties of the fabricated devices are listed in Table S1. We obtain the

resistivity and sheet resistance of the Al films by measuring the resistance of the feedline

at room temperature. We obtain the sheet kinetic inductance of the Al film by comparing

the measured resonance frequencies to their designed values. We measure Tc using a PPMS

(Physical Property Measurement System) with helium-3 refrigerator, showing that Tc ≈

1.2 K and the thicker Al film (25 nm) has a lower Tc ≈ 1.19 K compared to Tc ≈ 1.25 K

for the thinner Al film (15 nm). We did not measure Tc for 40 nm Al film. Two microscope

images of the fabricated resonator (Detector D) are shown in Fig. S1.

TABLE S1: The main DC properties of the Al films for detector (B-D), including the film thickness,

the resistivity ρ, the sheet resistance Rs, the sheet kinetic inductance Lk and the superconducting

transition temperature Tc.

Detector Thickness ρ (µΩ·cm) Rs (Ω/□) Lk (pH/□) Tc (K)

B 15 nm 6.3 4.20 2.23 1.25

C 25 nm 4.1 1.64 0.77 1.19

D 40 nm 3.6 0.87 0.42 /
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300 µm 75 µm

FIG. S1: [Color online] Microscope images of the lumped-element resonator. The figure on the

right is an enlarged image of the inductor. The color of aluminum is white.

B. Fiber-to-detector coupling and alignment

Fig. S2(a) illustrates the complete fiber-to-detector assembly for manual alignment to

increase the optical coupling. The assembly consists of a mounting base, a fiber-coupled

collimator, a sample (detector) holder with moving platforms, and a microscope with a

near-infrared camera (KEYENCE VH-5500). The sample holder is fixed to the base with

screws, and the base is mounted on an optical breadboard. The fiber-coupled collimator is

about 3 cm long and contains a lens which is customized to have a focal length of 3.5 mm at

1550 nm wavelength. A function generator is powered to stimulate a laser diode to produce

a laser light of 1064 nm wavelength, which is sent into the fiber, focused by the lens, and

illuminated onto the front side of the detector. Images of the transmission of the laser light

through the detector and the substrate are acquired with the microscope camera. Note

that the substrate is double-polished Si, which is transparent to light in the near-infrared

wavelength range.

Fig. S2(b) is the exploded view of the sample holder, which is made of oxygen-free copper

and consists of from bottom to top: the lower part, the middle part, the upper part, and

the lid. The collimator can move along the Z-axis through the lower part and secure its

position relative to the lower part with a few screws. The middle part is a moving platform

which has two extruded guide rails matching the two slots on the lower part so it can move
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FIG. S2: [Color online] (a) The complete fiber-to-detector assembly for manual alignment. (b) The

exploded view of the sample holder. (c) The incident light is focused onto the detector which is

glued to the upper part of the sample holder. The recorded image of the transmission light through

the detector and substrate shows a light spot of FWHM diameter ≈ 30 µm.

along the Y -axis. The position of the middle part relative to the lower part can be fixed

by a few screws. Similarly, the upper part can move along the X-axis and can secure its

position relative to the middle part. After manual alignment, a lid is placed on top of the

upper part. Fig. S2(c) shows the bottom view of the upper part of the sample holder, where

we can see the detector is glued to the bottom of the upper part with two SMA connectors

(not shown) for microwave input and output. There is a small hole of diameter ≈ 1 mm

allowing for light transmission in the middle of the upper part (not shown). By manually

adjusting the positions of collimator and moving platforms, the area of the light spot on

the detector can be minimized. Fig. S2(c) also shows an example image of the focused light

spot (with a FWHM diameter ≈ 30 µm) relative to the inductive strip of the detector. It

takes about 30 minutes for one manual alignment process.

C. Optical pulse response measurement

Our measurement setup for the homodyne detection scheme is shown in Fig. S3(a). A

synthesizer generates a probe microwave signal at a certain frequency, which is divided into

two signals through a power divider. One signal is used as a reference signal and input

into the local oscillator (LO) port of the I/Q mixer (demodulator). The other signal is
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attenuated before passing through the feed-line of the detector, amplified by a cryogenic

amplifier (HEMT) and a room-temperature amplifier, and then input into the RF port of

the IQ mixer. Inside the mixer, the RF and LO signals are both split, and the RF signals

are mixed with two LO signals that have a 90 degree phase shift between them. The mixer

outputs are then filtered by a low-pass filter (LPF) to remove the high-frequency mixing

products, providing I and Q signals which are sampled at 2.5 Ms/s and converted to digital

values by an analog to digital converter (ADC).

The sequence diagram of the optical pulse response measurement is sketched in Fig. S3(b),

where two frames of pulse response are shown. A function generator drives a laser diode at

room temperature to generate input optical pulses with a width of 200 ns at a repetition

frequency of 120 Hz. The duration between two adjacent optical pulses is about 8.3 ms,

which is long enough for the detector to relax to its initial state. The function generator

also triggers the A/D converter. For each pulse, we collect 2 ms data centered at the trigger

position as the response pulse and for calculating the template pulse in the following optimal

filter processing. We also use the 2 ms pre-trigger data for the dark noise spectrum analysis.

D. Optimal pulse filtering

We apply the standard Weiner optimal filter to the measured frequency response pulses

V (t) = δfr(t)/fr. A real pulse has the form V (t) = AS(t) +N(t), with V (t) the measured

response pulse, S(t) the template pulse, N(t) the noise, and A the normalized pusle height to

be estimated. In the frequency domain, we have V (f) = AS(f)+N(f). A can be optimally

estimated by calculating [1]:

A =

∫ ∞

−∞

V (f)S∗(f)

J(f)
df

/∫ ∞

−∞

|S(f)|2

J(f)
df. (S1)

In the integral of Eqn. S1, the lower frequency limit is 500 Hz, which is determined

by the 2 ms duration of the response pulse (see Fig. S3(b)). The upper frequency limit is

1.25 MHz, which is equal to half of the sampling rate (2.5 MHz). S(f) is calculated by Fourier

transforming the template pulse S(t), which is simply obtained by averaging all response

pulses. J(f) = |N(f)|2/T (T = 2 ms) is the dark noise power spectral density (PSD), where

N(f) =
∫∞
−∞N(t)e−j2πftdt. J(f) can be calculated from averaging the spectrum of each

frame of 2 ms pre-trigger data with light off (see Fig. S3(b)).
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FIG. S3: [Color online] (a) Measurement setup for optical pulse response. (b) Sketched sequence

diagram of the optical pulse response measurement.

As an example, Fig. S4(a) shows 18 unfiltered response pulses, which are randomly se-

lected from a total of 20000 response pulses at a certain optical power. The average pulse of

all 20000 response pulses, i.e., the template pulse S(t) is shown in the inset of Fig. S4(a). The

calculated PSD of the template pulse |S(f)|2/T and dark noise J(f) are shown in Fig. S4(b).

To check the consistency, we also plot the average residual, i.e., the average spectrum of each

response pulse subtracting the corresponding optimally filtered pulse, showing good agree-

ment with J(f). The inset shows the zoom-in picture, where we can see the average residual

is slightly bigger than J(f). This deviation may attribute to the increasing frequency noise

as away from resonance point. We will provide further discussion in Section E in the sup-

plementary material.
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FIG. S4: [Color online] (a) Unfiltered frequency response pulses. (b) The calculated |S(f)|2/T ,

J(f), and average residual. (c) Photon-counting histogram with λ = 2.23. (d) The obtained ∆E2
n

with absorbed photon energy are similar by using different optimal filtering methods.

The optimally filtered pulse height in δfr/fr is given by A×H, where H is the amplitude

of the template pulse S(t). Fig. S4(c) shows the histogram of A × H, corresponding to a

mean photon number λ = 2.23. The square of energy resolution ∆E2
n of each photon peak

(n = 0 − 5) is shown as the red dots in Fig. S4(d), exhibiting a linear relation with the

absorbed photon energy. Considering the response pulses for different photon number may

have different pulse shapes, we also apply different template pulses to response pulses with

different absorbed photon number. Besides, we also use a convolution filter without discrete

Fourier transform for pulse filtering. As shown in Fig. S4(d), similar results are obtained

with these three optimal filters.
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E. Energy resolution due to dark noises
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FIG. S5: [Color online] (a) The resonance circle (blue dots) and a response pulse (red dots)

corresponding to n = 7 in the complex plane. (b) Phase angle θ as a function of the resonance

frequency shift δfr/fr. (c) |dθ/dfr| is maximized at resonance point and decreases with increasing

|δfr/fr|, leading to a higher frequency noise away from the resonance point. (d) The modified

noise (red) vs the dark noise (black) in the time domain. In the range of 0− 200 µs, the modified

noise has a larger amplitude, which is determined by the response pulse amplitude. (e) J(f) for

n = 7 is slightly larger than J(f) for n = 0. (f) The calculated upper limit of ∆Ens(n)
2, which is

much smaller than experimental ∆E2
n.

Here, we use a simple method to estimate the upper limit of ∆Ens(n). Fig. S5(a) il-

lustrates a resonance curve (S21) and a response pulse in the complex plane. The pulse

quickly deviates from the resonance point (Zr), reaches its peak and then slowly relaxes

back to Zr with time. Through the phase-frequency relationship from the measured S21

(Fig. S5(b)), we can convert the phase change δθ to the frequency change δfr, which is

proportional to the absorbed photon number (energy) and taken as the response signal for
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further processing. Assuming a given voltage noise (phase noise δθ) due to amplifier and

because δfr = δθ/(dθ/dfr), the frequency noise is minimized at point Zr, where the absolute

value of dθ/dfr is a maximum. As shown in Fig. S5(c), |dθ/dfr| decreases as away from Zr,

therefore we expect that ∆Ens(n) will increase with the absorbed photon energy En = nhν.

We can derive the variance of the O. F. pulse height A×H, which takes the form [1]:

σ2
A×H/H

2 =

[ ∫ ∞

−∞

|S(f)|2

J(f)
df

]−1

. (S2)

However, it is difficult to obtain J(f) exactly because J(f) varies with the response pulse

height. For simplicity, we consider modifying the time-domain dark frequency noise N(t)

by amplifying a duration of 200 µs (about three times the relaxation time of the response

pulse) noise to the noise amplitude at the response pulse peak (scaling with 1/|dθ/dfr|),

which is shown in Fig. S5(d). This allows us to estimate J(f) (Fig. S5(e)) and σ2
A×H . By

using Eqn. (1) in the manuscript, we can estimate ∆Ens(n)
2, which is plotted as the blue

curve in Fig. S5(f). It shows that ∆Ens(n)
2 is much smaller than experimental ∆E2

n.

F. Energy resolution due to current non-uniformity

Fig. S6(a) shows the simulated current density distribution at the resonance frequency

≈ 1 GHz for Detector C and we can see that the current is mainly distributed on the

inductor strip. The phase velocity on the inductor is calculated to be ≈ 1.2× 108 m/s, thus

the microwave wavelength at 1 GHz ≈ 117 mm, which is much longer than the length of

inductor strip lind = 1.5 mm. Therefore the current is expected to be very uniform on the

inductor. This can be seen more clearly in Fig. S6(b), which shows that the difference in

the current density is less than 0.2% on the entire inductor.

Non-uniform current distribution will lead to a position-dependent response, which con-

tributes ∆Ersp to the total energy resolution. Here we use a simple model to estimate

∆Ersp. Let I(x) (0 < x < lind) represent the simulated current density on the quasi-

one-dimensional inductor strip, and P (x) represent the probability of the photon being

absorbed at position x, i.e., P (x) is proportional to the spatial distribution of the il-

lumination intensity. Without considering the quasi-particle diffusion, and assuming the

single-photon response amplitude A(x) for a photon absorbed at x is proportional to both

the square of the current density I2(x) [2] and the single-photon energy hν, we have
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FIG. S6: [Color online] (a) Simulated current density distribution on Detector C. (b) The current

density on the quasi-one-dimensional inductor strip shows great uniformity.

A(x) = khνI2(x), where k is a proportionality coefficient. We can obtain the average

single-photon response Ā =
∫ lind

0
A(x)P (x)dx = khνH1, where H1 =

∫ lind

0
I2(x)P (x)dx,

and the variance of the single-photon response σ2
A =

∫ lind

0
(A(x) − Ā)2P (x)dx = (khν)2H2,

where H2 =
∫ lind

0
(I2(x)P (x) − H1)

2P (x)dx. Both H1 and H2 are only related to the dis-

tribution of current density and illumination intensity. For absorption of n independent

photons, we can derive that the average n-photon response Ān = nĀ and the variance

σ2
An

= nσ2
A. Then we can obtain the n-photon energy resolution due to non-uniform re-

sponses by calculating ∆Ersp(n) = 2
√

2ln(2)σAnnhν/Ān = 2
√
2ln(2)

√
nhν

√
H2/H1. With

the simulated current distribution and a Gaussian light spot of FWHM diameter ≈ 198 µm,

we get ∆Ersp(n = 1) ≈ 2.53 × 10−4 eV (corresponding to single-photon energy-resolving

power R1 = 4610), which is much smaller than the experimental ∆E1 = 0.28 eV.

If we further consider a quasi-particle diffusion length L, the single-photon re-

sponse can be estimated by simply averaging the position-dependent responses, A(x) =∫ x+L/2

x−L/2
khνI2(x′)dx′/L. Assuming a response time of τ = 20 µs and a quasi-particle diffu-

sion constant in Al film D = 20 cm2/s, we have L = (Dτ)1/2 = 200 µm. The calculated

∆Ersp(n = 1) ≈ 2.51 × 10−4 eV, which remains unchanged compared to the case without

diffusion. This shows that the diffusion has little influence on the energy resolution as long

as the diffusion length is much smaller than the inductor length.

The above analysis is based on ideal conditions. Under non-ideal conditions (e.g., im-

perfect film and device fabrication), the uniformity of current distribution may decrease
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and lead to a more pronounced non-uniform response. If non-uniform response is indeed a

main factor to limit energy resolution, we will find that ∆E2
n ∼ (hν)nhν. In other words,

∆E2
n with nhν should exhibit different slopes for absorbed photons of different wavelengths.

However, the experimental ∆E2
n with nhν show the same slope for 1550 nm and 1064 nm

photons, suggesting that non-uniform response is unlikely to make a significant contribution

to energy resolution.

G. Calculation of phonon loss factor J

We follow the method in Ref. [3] to calculate the absolute phonon loss factor J = Jhigh +

Jlow, where Jhigh and Jhigh are phonon loss factors from high-energy part (from photon

energy to around Debye energy ΩD) and low-energy part (from ΩD to characteristic energy

Ω1 ≈ 10.6∆ for Al) of the energy down-conversion process respectively.

For calculation of Jhigh, we take the equation (25) in Ref. [4] and reproduce it in Eqn. (S3)

shown below:

Js
± =

4ΩD

ε0

∞∑
m=0

κ (m2ζ2)

(1 + δm,0)

× (−1)m[s+(1±1)/2]{1− exp[imπ − d/L(E)]}
{1− exp[−d/L(E)]} [1 +m2π2L2(E)/d2]

×
∫ ΩD

0

dϵ

ΩD

(
ϵ

ΩD

)4
lpb(ϵ)

d

∫ 1

ξ±c

dξξη±(ξ)

×

(
1− exp [imπ − d/lpb(ϵ)ξ]

1 +m2π2l2pb(ϵ)ξ
2/d2

−η±(ξ)p±(ξ)
2 {1− exp [imπ − 2d/lpb(ϵ)ξ]}

4 +m2π2l2pb(ϵ)ξ
2/d2

)
.

(S3)

In Eqn. (S3), κ(x) = exp(−x)sinh(x)/x, ζ2 = π2Dtdc/2d
2, δm,m′ is the Kronecker symbol,

L(E) is the 1/e photon absorption depth, and lpb(ϵ) = lpe,D
ΩD

ϵ
is the phonon mean free

path [5]. lpe,D is determined by the Deybe phonon lifetime (≈ 3.5 ps in aluminum [6]) and

average phonon velocity (≈ 3661 m/s in aluminum [7]). Other main notations and their

input values are summarized in Table S2. For our case, we calculate Jhigh = J− with s = 1,

because the photon is incident onto the top surface of the Al absorber and the hot phonons

are lost from the substrate below the absorber. We use the same material parameters for Al

film as in Ref. [3]. For high-resistivity Si (100) substrate, we take the longitudinal phonon

11



TABLE S2: The notations and input values to calculate J .

Notations Definitions Values

ΩD Debye energy 36.9 meV

Ω1 characteristic energy 10.6∆

ε0 mean energy necessary to generate a single QP 1.7∆

s s = 1 (2) for photon incident from the top (bottom) 1

D the QP diffusion coefficient 2e-3 m2s−1

tdc duration of E1 to ΩD stage 4.5e-14 s

d thickness of the Al absorber layer 25 nm

lpe,D mean free path of phonons with Debye energy 12.8 nm

ξc cosine of the critical angle for phonon transmission at the interface 0.629

η transmission coefficients for phonons at the interface 0.63

p probability of phonon reaching an interface without being absorbed 0.185

velocity cl = 8556 m/s and transverse phonon velocity ct = 3260 m/s from Ref. [8]. This

results in the cosine of the critical angle for phonon transmission at the interface ξ−c = 0.890,

the probability of phonon reaching an interface without being absorbed p− = 0.185, and the

transmission coefficients for phonons at the Al/Si interface η− = 0.63 [7]. With these

parameters we obtain Jhigh = 2.3. Note that there is a 18 nm thin SiNx layer between Al

and Si substrate. If we use the properties of SiNx film (cl = 10300 m/s and ct = 6200 m/s)

as in Ref. [3] to calculate Eqn. (S3), we will obtain Jhigh = 1.5.

For calculation of Jlow, we use the Eqn. (C1) in Ref. [3] and obtain Jlow = 0.9 (0.5) for

Si (SiNx) substrate. Therefore we estimate J = Jhigh + Jlow = 2.3 + 0.9 = 3.2 for our device

(detector C).

H. Determination of photon number

As shown in the histograms of Fig. 3 in the manuscript, the photon counting events obey

Poisson statistics. With increasing mean photon number λ, the distribution shifts to higher

photon numbers and more photon peaks can be observed. At higher optical powers, as is

the case in Fig. 5 in the manuscript, the first few photon peaks can not be seen.
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FIG. S7: The method to determine the photon number of each photon peak. (a) Photon-counting

histogram at 1550 nm. (b) Pulse height of clearly visible photon peaks as a function of λ at

1550 nm. (c) Photon-counting histogram at 1550 nm. (d) Pulse height of clearly visible photon

peaks as a function of λ at 1550 nm.

To determine the photon number n of each photon peak in Fig. 5, we can calculate

n ∼ Xn/∆X, where Xn is the n-photon peak position (in O. F. pulse height) and ∆X is

the spacing between adjacent photon peaks. In all histograms, we can see ∆X is the same,

corresponding to a fixed single-photon responsivity (δfr/fr)n=1 = ∆X ≈ 1.66 × 10−6 for

1064 nm and ∆X ≈ 1.14 × 10−6 for 1550 nm. For the marked photon peaks in Fig. S7(a)

and Fig. S7(c), we get n ≈ 10.88 and n ≈ 15.84 respectively, which are generally not integers.

To further determine the photon number, we show the pulse height of clearly visible

photon peaks as a function of mean photon number in Fig. S7(b) and Fig. S7(d). For lower

λ, we obtain the pulse height (red dots) from fitting. We manually determine the pulse

height (blue dots) for higher λ due to the difficulty in fitting. In some areas, we see the

overlap of red and blue dots, indicating that the manually determined pulse height is close
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to the value obtained from fitting. The data points clearly fall into different groups (marked

by the dashed lines), corresponding to different photon numbers n. We can then determine

the photon number for each photon peak. Note that the pulse height is flat with λ for lower

n, and increases a little with λ for higher n due to the possible IDC response and thermal

effects at higher optical powers.
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