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A. Equivalent Resonance Circuit
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FIG. S1: (a) Open circuit half-wavelength CPW with coupling capacitance Cc to input and output

ports. (b) Near the fundamental resonance frequency, the CPW behaves as a parallel LCR circuit.

(c) Using NORTON’s equivalence theorem, the original circuit behaves as a CPW resonator in

parallel with Rc(ω) and Cc/2. (d) For the n-th resonance modes, the original circuit can be

modelled as a lumped-element LnCnRn parallel circuit with a current source Iin.

According to the transmission line theory, the input impedance of an open-circuited CPW

(FIG. S1(a)) with length l is

Zin = Z0 coth(α + jβ) = Z0
1 + j tan(βl) tanh(αl)

tanh(αl) + j tan(βl)
(S1)

where α + jβ is the complex propagation constant and Z0 =

√
L̃/C̃ is the characteristic

impedance of the CPW (matched with the input and load impedance). Here L̃ and C̃ are

distributed inductance and capacitance of the CPW per unit length respectively.

Near the half-wave resonance condition, we can write βl = π(1 + ∆ω/ω0), where ∆ω =

ω−ω0 and ω0 = π/(l
√
L̃C̃) is the fundamental resonance frequency. For a CPW with small

loss αl << 1 and at a frequency close to the resonance frequency, we have tanh (αl) ≈ αl

and tan βl ≈ π∆ω/ω0, then Eqn. (S1) can be approximated to:

Zin =
Z0

αl + jπ∆ω/ω0

(S2)

Eqn. (S2) takes the same form as a parallel LCR resonance circuit (FIG. S1(b)) with input

impedance:

Zin =
R

1 + 2j∆ωRC
=

R

1 + 2jQ∆ω/ω0

(S3)
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By comparing Eqn. (S2) and Eqn. (S3), one can obtain the relations between lumped-

element LCR parameters and the distributed circuit parameters:

L =
2l

π2
L̃ C =

l

2
C̃ R =

Z0

αl
(S4)

L and C sets the fundamental resonance frequency at ω0 = 1/
√
LC, and the internal quality

factor (due to internal dissipation) is given by Q = ω0RC. The Norton equivalent impedance

seen from the two ends of the CPW is:

Zg = 2(Z0 +
1

jωCc
) (S5)

For weak coupling condition (ωCcZ0 � 1), the Norton admittance is:

Yg =
1

Zg
≈ jωCc

2
+

1

Rc(ω)
(S6)

where

Rc(ω) =
2

Z0(ωCc)2
(S7)

which relates to the coupling quality factor by Qc = ωRc(ω)(C + Cc/2) ≈ ωRc(ω)C. Eqn.

(S6) indicates that the original circuit can be modelled as a CPW resonator in parallel with

a small capacitance Cc/2 and a frequency-dependent resistance Rc(ω), which is shown in

FIG. S1(c).

The above derivation for the fundamental resonance frequency can be generalized to all

resonance modes. Around the n-th resonance frequencies ωn = nω0 (n = 1, 2, 3, ...), we have

βl = nπ(1 + ∆ω/ω0) and tan βl ≈ nπ∆ω/ω0. Then it can be derived that the equivalent

lumped-element parameters are given by:

Ln =
1

n2
L Cn = C +

Cc
2

Rcn =
1

n2
Rc Qcn =

1

n
Qc (S8)

Ln and Cn sets the n-th resonance frequency at ωn = 1/
√
LnCn = nω0. Rcn and R (internal

resistance) in parallel result in a total equivalent resistance Rn and a corresponding total

quality factor Qn = ωnRnCn. These parameters satisfy the relations 1/Rn = 1/R + 1/Rcn

and 1/Qn = 1/Q+ 1/Qcn. The equivalent lumped-element circuit for n-th resonance mode

is shown in FIG. S1(d).

B. Variable Inductance Model

To simulate the time-dependent change of the kinetic inductance due to quasi-particle

generation and recombination, we develop a variable inductance model based on the Simulink
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FIG. S2: (a) The simulated resonance circuit with a variable inductance. (b) The inner circuit of

the variable inductance block. (c) I/Q mixing and demodulation.

of MATLAB [1], which can serve as a general and quantitative approach to analyze the

optical pulse response of a resonator. FIG. S2(a) shows the simulated resonance circuit

with a variable inductance block which follows the Faraday’s law. FIG. S2(b) shows the

inner circuit of this variable inductance block and the current is defined to flow from the

positive terminal to the negative terminal. The voltage across the variable inductor is

V (t) = L(t)d(I(t))/dt+ I(t)d(L(t))/dt and the instantaneous current through the inductor

is I(t) =
∫
V (t)dt/L(t).

In simulation, we set the values of inductance Ln and resistanceRn to match the resonance

frequency and total quality factor in experiments. The capacitance Cn is determined by

Sonnet simulation. We input a microwave current with constant amplitude at a frequency

on resonance with the LCR circuit, and the time-dependent voltage can be measured at the

output. As shown in FIG. S2(c), the input and output voltage signals are mixed and filtered
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by a low pass filter to give the demodulated signal in the complex plane (I/Q data).

Here we take the case of fundamental resonance (n = 1) as an example to demonstrate

the validity of our simulation model. From Sonnet simulation, we can obtain the distributed

capacitance of the designed half-wavelength CPW C̃ = 1.507× 10−10 F/m, which gives the

equivalent capacitance C1 = 4.4788 pF (according to Eqn.(S8)). The equivalent inductance

L1 = 6.174576 nH and resistance R1 = 1.418358 × 106 Ohm set the resonance frequency

f1 = 0.957052 GHz and the total quality factor Q1 = 38.2 × 103, which are in consistent

with experiments. We first sweep 201 frequency points centered at f1 with an appropriate

frequency span = 10f1/Q1. The simulated resonance circle in the complex plane is shown

in FIG. S3(a). By fitting this resonance circle, we can extract the phase-frequency relation,

as shown in FIG. S3(b).

Then we simulate the optical pulse response at the resonance frequency f1. We apply a

sudden and small change δL1(t) in the inductance, i.e., L1(t) = L1 + δL1(t) (δL1(t)� L1).

As shown in FIG. S3(c) (red curve), δL1(t) has a linear slope for the first 200 ns and reaches

its maximum δL1(t)/L1 = 6.4× 10−7 at t = 200 ns. After that, δL1(t) decays exponentially

as e−t/τ , where τ = 40 µs. The input variable δL1(t) will lead to a dynamical phase shift at

the output, which is then converted to a frequency shift according to the phase-frequency

relation (FIG. S3(b)). The simulated relative resonance frequency shift δf1(t)/f1 is shown

in FIG. S3(d) (red curve). One can see that the frequency shift peaks at t ≈ 20 µs, which

is the response time of the resonance circuit. The maximum of δf1(t)/f1 is smaller than the

maximum of δL1(t)/L1. The response curve also has a slower falling edge compared to the

input inductance variations. These features are all observed in experiments.

Gao’s thesis [2] provides a perturbation analysis on the dynamic response of the resonator.

Assume we have a small and slow time-dependent inductance variation, which is a narrow-

banded signal with Fourier transform δL(t) =
∫
δL(f̃)e2πf̃tdf̃ . It can be derived that when

the resonator is driven on resonance f = fn, the Fourier transform of the time-dependent

transmission variation δS21(t)|f=fn is δS21(f̃), which is proportional to δL(f̃)/(1+j2Qf̃/fn),

indicating that the resonator acts as a low-pass filter with a bandwidth equal to the res-

onator’s bandwidth fn/2Q. Then in principle the instant transmission variation δS21(t) can

be obtained by integrating the inverse Fourier transform
∫

df̃ e2πf̃tδL(f̃)/(1 + j2Qf̃/fn).

As shown in FIG. S3(d), the theoretical response (blue dotted curve) based on perturbation

analysis is identical to the simulated response, demonstrating the validity of both the pertur-
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FIG. S3: (a) The simulated resonance circle (blue dotted curve) in the complex plane. The

red curve (see zoom-in image in the inset) shows the pulse response due to a small inductance

variation. (b) The extracted phase-frequency relation from the simulated resonance circle. (c) The

input variable δL1(t)/L1 (red curve), and the derived δL1(t)/L1 (blue dots) from the frequency

response using an iterative method. The agreement between these two curves demonstrate that our

iterative method is effective to retrieve inductance variation in the time domain. (d) The simulated

frequency response (red curve) and the theoretical response (blue dots) based on perturbation

analysis, showing perfect agreements.

bation analysis and our simulation model. Note that, the perturbation analysis only holds

for small inductance variation (δL(t) � L) and the frequency of the inductance variation

should be much smaller then the microwave signal frequency. Besides, a long time series

of signal is needed in order to correctly implement the Fourier transform. However, our

numerical simulation model is not limited to these conditions and therefore can be used in

wider applications.

From the frequency response, one can use an iterative method to retrieve the input

time-dependent inductance variations. We first try the falling stage of the target frequency
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response δf1(t)/f1 as the initial solution for the shape of inductance variation (δL1(t)/L1).

We adjust the inductance variation maximum so that the magnitude of the simulated fre-

quency response is roughly consistent with the target frequency response. Then we gradually

correct the shape of the inductance variation based on the difference between the simulated

result and the target frequency response. For each correction, the response time and decay

profile of simulated response has a better match with the target frequency response. In

the mean time, the maximum of δL1(t)/L1 also needs to be slightly adjusted. After a few

iterations, we can get a simulated response which is almost identical to the target frequency

response. As shown in FIG. S3(c), the retrieved inductance variation (blue dots) shows

remarkable agreements with the original inductance variation (red curve), with a small dif-

ference in the magnitude less than 0.5%. The above results demonstrate the validity of both

the simulation model and iterative method, which is used in our paper to retrieve (estimate)

the real inductance variation from the experimental resonator response.

C. Gaussian diffusion model

We now consider a simple one-dimensional model which can describe both effects of quasi-

particle recombination (relaxation) and diffusion. The quasi-particle density is a function of

position and time, satisfying the following equation:

dn(x, t)

dt
+
n(x, t)

τ
= D

d2n(x, t)

dx2
(S9)

where D is the quasi-particle diffusion constant in the superconductor and τ is a constant

quasi-particle lifetime. For a Gaussian distribution of quasi-particle with initial width σ0 at

t = 0 and centered at x = 0, the solution of Eqn. (S9) can be easily obtained:

n(x, t) = n0e
−t/τ σ0

σ(t)
e
− x2

2σ2(t) (S10)

where n0 is the quasi-particle density at x = 0 and t = 0, and the quasi-particle distribution

width at time t is given by σ2(t) = σ2
0 +2Dt. However, the relaxation of quasi-particle might

be related to the quasi-particle density with a more complicated form than Eqn. (S9). For

example, higher order terms of n(x, t) (e.g., n2(x, t)) can be included in Eqn. (S9), resulting

in a more complicated relaxation process which is hard to be expressed analytically. In our

paper, we assume the quasi-particle density can still be written in the form:

n(x, t) = n0f(t)
σ0
σ(t)

e
− x2

2σ2(t) (S11)
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where f(t) is a time-dependent function but does not have to be an exponential decay. Based

on this model, we can calculate the ratio of δLn(t)/Ln(t) between only one pair of odd and

even resonance modes to estimate the QP diffusion parameters (diffusion constants D and

initial width σ0). The results are given in TABLE S1:

Ratio
50 mK 350 mK

D D∗ σ0 D D∗ σ0

Res.2/1 148.5 140.3 1.34 179.7 182.9 1.58

Res.2/3 163.7 151.8 1.67 250.7 253.7 1.76

Res.2/5 158.8 148.8 1.69 227.6 228.0 1.73

Res.4/1 83.2 80.0 1.02 147.6 147.2 1.15

Res.4/3 106.9 102.8 1.29 237.6 236.4 1.30

Res.4/6 108.1 103.7 1.33 220.2 218.1 1.31

Res.6/1 47.6 43.4 0.85 85.1 78.1 0.97

Res.6/3 73.4 66.3 1.10 174.8 162.4 1.10

Res.6/5 78.2 66.3 1.14 174.8 162.4 1.12

Average 103.1 97.7 1.27 187.2 184.7 1.33

? The units of D (D∗) and σ0 are cm2/s and mm respectively.

TABLE S1: Estimated diffusion constant D and initial QP width σ0. For 50 mK, D (D∗) is

obtained by fitting data from 50 µs to 200 µs (100 µs to 200 µs). For 350 mK, D (D∗) is obtained

by fitting data from 30 µs to 150 µs (80 µs to 150 µs). The QPs relax faster at 350 mK than

50 mK, so we set 200 µs (150 µs) as the cut-off time for data at 50 mK (350 mK).
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