Supplementary Materials for "Superconducting micro-resonator arrays with ideal frequency spacing"

X. Liu¹, W. Guo^{2,3*}, Y. Wang¹, M. Dai³, L. F. Wei^{1,3,4}, B. Dober², C. McKenney², G. C.

Hilton², J. Hubmayr², J. E. Austermann², J. N. Ullom², J. Gao², and M. R. Vissers²

 Quantum Optoelectronics Laboratory, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, China

2) National Institute of Standards and Technology, Boulder, CO 80305, USA[†]

3) Information Quantum Technology Laboratory,

School of Information Science and Technology,

Southwest Jiaotong University, Chengdu, 610031, China

4) State Key Laboratory of Optoelectronic Materials and Technologies,

School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

(Dated: December 5, 2017)

 $^{^{\}ast}$ Author to whom correspondence should be addressed. Electronic mail: weijie.guo@nist.gov

 $^{^\}dagger$ Contribution of the U.S. Government, not subject to copyright

Derivation of frequency collision probability and array yield formula

In this note, we assume an array of infinite number of resonators with the design resonance frequencies distributed in a geometric series, $f_n/f_{n-1} = 1 + \Delta$ ($\Delta \ll 1$, and $\Delta = 0.002$ for the array in our paper). We pick an arbitrary resonator in the array (referred to as the 0th-resonator) and assume there exist infinity number of resonators both above and below the frequency of the 0th resonator f_0 . This is an appropriate assumption for calculating the average yield for a large array of resonators. We model the actual resonance frequency of the n^{th} resonator as a random variable \tilde{f}_n with a mean of $\langle \tilde{f}_n \rangle = f_n$ and assume its fractional frequency error (between the design and actual resonance frequency), $\frac{\tilde{f}_n - f_n}{f_n}$, follows a Gaussian distribution of $G(0, \sigma^2/2)$ which is independent for different n.

We define a new random variable \tilde{x}_n by

$$\tilde{x_n} = \log(\frac{f_n}{\tilde{f_0}}) = \log(\tilde{f_n}) - \log(\tilde{f_0}), \tag{S1}$$

which transforms the frequency axis into a log-frequency axis and fixes \tilde{x}_0 at the origin (no longer a random variable). The advantage of this transformation is that $x_n = \langle \tilde{x}_n \rangle$ is now evenly spaced by Δ on the x-axis ($x_n = n\Delta$, see Fig. S1), which simplifies our following analysis. It follows that \tilde{x}_n for each n also obeys an independent Gaussian distribution of $G(n\Delta, \sigma^2)$ (as shown in Fig. S1), where we have used the property that the difference of two independent Gaussian random variables is still a Gaussian random variable.

FIG. S1: Frequency collision model in log-frequency space.

We are now ready to calculate the probability P_{n0} for the 0^{th} resonator to survive the collision with the n^{th} resonator $(n = \pm 1, \pm 2, ..)$. According to our χ -linewidth frequency

collision criterion, collision between the n^{th} and 0^{th} resonators occurs when \tilde{x}_n lies in the region of $[-\chi w, \chi w]$, where w = 1/Q is the linewidth (unitless) of the resonator.

It follows that P_{n0} can be calculated in terms of an integral of the Gaussian distribution function in the region excluding $[-\chi w, \chi w]$,

$$P_{n0} = 1 - \int_{-\chi w}^{+\chi w} G(x; n\Delta, \sigma^2) dx$$

$$= 1 - \int_{\frac{-n\Delta + \chi w}{\sigma}}^{\frac{-n\Delta + \chi w}{\sigma}} G(x; 0, 1) dx$$

$$= 1 - \frac{\operatorname{Erf}(\frac{n\Delta + \chi w}{\sqrt{2\sigma}}) - \operatorname{Erf}(\frac{n\Delta - \chi w}{\sqrt{2\sigma}})}{2}$$
(S2)

where $\operatorname{Erf}(x)$ is the error function defined as

$$\operatorname{Erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$$
 (S3)

After getting the probability for the 0_{th} resonator to survive the collision with the n_{th} resonator, we can calculate the probability for the 0_{th} resonator to survive collisions with all the other resonators $(n = \pm 1, \pm 2, ...)$ as

$$P_{0} = \prod_{n} P_{n0} = \{\prod_{n=1}^{n=\infty} [1 - \frac{\operatorname{Erf}(\frac{n\Delta + \chi w}{\sqrt{2}\sigma}) - \operatorname{Erf}(\frac{n\Delta - \chi w}{\sqrt{2}\sigma})}{2}]\}^{2}$$
(S4)

Eqn. S4 is the average yield of the array in terms of frequency collision.