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Derivation of frequency collision probability and array yield formula

In this note, we assume an array of infinite number of resonators with the design reso-

nance frequencies distributed in a geometric series, fn/fn−1 = 1+∆ (∆� 1, and ∆ = 0.002

for the array in our paper). We pick an arbitrary resonator in the array (referred to as the

0th-resonator) and assume there exist infinity number of resonators both above and below

the frequency of the 0th resonator f0. This is an appropriate assumption for calculating the

average yield for a large array of resonators. We model the actual resonance frequency of

the nth resonator as a random variable f̃n with a mean of 〈f̃n〉 = fn and assume its frac-

tional frequency error (between the design and actual resonance frequency), f̃n−fn
fn

, follows

a Gaussian distribution of G(0, σ2/2) which is independent for different n.

We define a new random variable x̃n by

x̃n = log(
f̃n

f̃0

) = log(f̃n)− log(f̃0), (S1)

which transforms the frequency axis into a log-frequency axis and fixes x̃0 at the origin (no

longer a random variable). The advantage of this transformation is that xn = 〈x̃n〉 is now

evenly spaced by ∆ on the x-axis (xn = n∆, see Fig. S1), which simplifies our following

analysis. It follows that x̃n for each n also obeys an independent Gaussian distribution of

G(n∆, σ2) (as shown in Fig. S1), where we have used the property that the difference of

two independent Gaussian random variables is still a Gaussian random variable.
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FIG. S1: Frequency collision model in log-frequency space.

We are now ready to calculate the probability Pn0 for the 0th resonator to survive the

collision with the nth resonator (n = ±1,±2, ..). According to our χ-linewidth frequency
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collision criterion, collision between the nth and 0th resonators occurs when x̃n lies in the

region of [−χw, χw], where w = 1/Q is the linewidth (unitless) of the resonator.

It follows that Pn0 can be calculated in terms of an integral of the Gaussian distribution

function in the region excluding [−χw, χw],

Pn0 = 1−
∫ +χw

−χw
G(x;n∆, σ2)dx (S2)

= 1−
∫ −n∆+χw

σ

−n∆−χw
σ

G(x; 0, 1)dx

= 1−
Erf(n∆+χw√

2σ
)− Erf(n∆−χw)√

2σ
)

2

where Erf(x) is the error function defined as

Erf(x) =
1√
π

∫ x

−x
e−t

2

dt (S3)

After getting the probability for the 0th resonator to survive the collision with the nth

resonator, we can calculate the probability for the 0th resonator to survive collisions with all

the other resonators (n = ±1,±2, ...) as

P0 =
∏
n

Pn0 = {
n=∞∏
n=1

[1−
Erf(n∆+χw√

2σ
)− Erf(n∆−χw√

2σ
)

2
]}2 (S4)

Eqn. S4 is the average yield of the array in terms of frequency collision.
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